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SUMMARY OF WHAT IS NEW OR DIFFERENT

Since publication of the 2018 guidelines, the area of glucose mon-

itoring has evolved, especially as regards continuous glucose mon-

itoring (CGM) systems. CGM is more widely available in many

parts of the world; latest generation devices are factory-cali-

brated, more accurate, and do not need a confirmatory fingerstick

blood glucose measurement. More studies regarding the efficacy

of CGM systems, irrespective of the type of insulin delivery, are

available including long-term observational studies. With increased

availability and wider use, practical considerations related to daily

CGM use (e.g., skin issues, physical activity) as well as educational

and psychosocial aspects have come to the fore, which are also

addressed in this chapter.
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EXECUTIVE SUMMARY AND
RECOMMENDATIONS

• Regular self-monitoring of glucose (using accurate fingerstick blood

glucose [BG] measurements, real-time continuous glucose monitor-

ing [rtCGM] or intermittently scanned CGM [isCGM]), is essential

for diabetes management for all children and adolescents with dia-

betes. A

� Each child should have access to technology and materials for

self-monitoring of glucose levels and sufficient supplies to opti-

mize diabetes care. B

� When fingerstick BGs are used, testing may need to be per-

formed 6 to 10 times per day to optimize glycemia. B

� Frequency of BG testing correlates with improved HbA1c levels

and reduced acute complications. B

� Regular review of glucose values should be performed to inform

adjustments to medication/nutritional therapies to optimize gly-

cemia. B

� Diabetes center personnel should advocate to nations, states,

and health care funders to ensure that children and adolescents

with diabetes have adequate glucose monitoring supplies. E

• Providers should be aware of the differences in accuracy among

BG meters—only meters that achieve international accuracy stan-

dards (ISO 15197:2013 or are FDA-approved) should be used. E

• Use of CGM is strongly recommended in all children, adolescents,

and young adults with type 1 diabetes (T1D). A

• Where available, CGM should be initiated in all children, adoles-

cents, and young adults with T1D as soon as possible after diagno-

sis to improve glycemic outcomes. B

• isCGM, also known as flash glucose monitoring, in the pediatric

population is safe, may improve time in range (TIR) and HbA1c

levels, decreases time in hypoglycemia, and lowers glycemic vari-

ability. B

• For isCGM, higher scanning frequency (11–13 scans/per day) is

associated with more favorable glycemic markers (HbA1c and

TIR). B

• rtCGM can be effectively used to lower HbA1c levels, reach target

HbA1c level, reduce glucose variability (for insulin pumps, closed-

loop systems, and multiple daily injections [MDI]), increase TIR,

reduce mild to moderate hypoglycemia and shorten time spent in

hypoglycemia in the pediatric population with T1D. A

• rtCGM data can particularly benefit children who cannot articulate

symptoms of hypoglycemia or hyperglycemia and those with hypo-

glycemic unawareness. A

• The effectiveness of rtCGM in children and adolescents with T1D

is related to the amount of time the sensor is used. A

• Prior to CGM start, portray the use of diabetes devices and tech-

nologies as an option that can be a good fit for many youth and

families; provide education and encourage youth and families to

review vetted websites and device informational materials. E

• Structured initial and ongoing education and training in CGM use

(including data review) is paramount to successful adoption and

continued use of this technology. E

• Setting realistic expectations for the integration of diabetes tech-

nologies is paramount to ensure the success of persons and care-

givers adopting new technologies. B

• It is critical to counsel youth/families and identify potential barriers

to adoption of new technologies or continued use of devices. Vali-

dated person-reported outcome measures can help to identify bar-

riers. B

1 | INTRODUCTION

Self-monitoring of glucose has a pivotal role in the management of

insulin-treated children and adolescents with diabetes. It tracks imme-

diate and daily glucose levels including periods of hypo- and hypergly-

cemia, helps guide insulin dose adjustments, facilitates evaluation of

therapy responses and achievement of glycemic targets in a safe and

effective manner.

Along with major clinical trials demonstrating the superiority of

intensive insulin therapy in persons with T1D in the early 1990s,1

self-monitoring of capillary blood glucose (SMBG) using hand-held

portable meters in combination with glucose test strips and a lancet

became the most widely used method of glucose monitoring, repla-

cing urine glucose testing.

In recent years, systems for continuously monitoring interstitial

fluid glucose concentrations, CGM, using subcutaneously placed glu-

cose sensors have become standard of care in T1D in many countries,

particularly for children, adolescents, and young adults,2 and have

been successfully employed for insulin-treated type 2 diabetes.3

The purpose of this chapter is to review and update the evidence

on glucose monitoring devices (i.e., SMBG and CGM) in children, ado-

lescents, and young adults and to provide practical advice and

approaches to their use.

TABLE 1 Comparison of ISO 15197:2013 and FDA BG meter
accuracy standards

Setting ISO 15197:20135 FDA6,7

Home

use

95% within 15% for BG

≥100 mg/dl

95% within 15 mg/dl for

BG <100 mg/dl

99% in A or B region of

consensus error grida

95% within 15% for all BG

in the usable BG rangeb

99% within 20% for all BG

in the usable BG rangeb

Hospital

use

95% within 12% for BG

≥75 mg/dl

95% within 12 mg/dl for BG

<75 mg/dl

98% within 15% for BG

≥75 mg/dl

98% within 15 mg/dl for BG

<75 mg/dl

Abbreviations: BG, blood glucose; FDA, U.S. Food and Drug

Administration; ISO, International Organization for Standardization.
aThe range of blood glucose values for which the meter has been proven

accurate and will provide readings (other than low, high, or error).
bValues outside of the “clinically acceptable” A and B regions are

considered “outlier” readings and may be dangerous to use for therapeutic

decisions.8
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2 | SELF-MONITORING OF CAPILLARY
BLOOD GLUCOSE

Early SMBG measurement methods relied upon reflectance assays

coupled with oxidation of glucose allowing for a colorimetric readout.

Currently available glucose meters use an electrochemical method

with an enzyme electrode containing either glucose oxidase or glu-

cose dehydrogenase.

2.1 | Meter standards and accuracy

There is considerable variation in the accuracy of widely-used BG

monitors.4 Most reliable data are provided by meters meeting current

international accuracy standards. The two most used standards are

those of the International Organization for Standardization (ISO) (ISO

15197:2013) and the U.S. Food and Drug Administration (FDA)

(Table 1). ISPAD recommends exclusive use of glucose meters that

achieve these standards. Health care professionals should choose and

advise on meters that are accurate and familiar to them as well as

affordable to the person with diabetes.

The specified accuracy standard achieved during controlled con-

ditions might vary significantly from actual SMBG meter performance

in real-world settings.4 Detailed information on the actual perfor-

mance of SMBG devices is provided by The Diabetes Technology

Society Blood Glucose Monitoring System Surveillance Program

(www.diabetestechnology.org/surveillance/).

SMBG accuracy depends on proper hand washing with complete

drying9 and requires proper blood application and use of adequately

stored, unexpired test strips, which are not counterfeit nor preowned/

second hand.10 Providers and persons with diabetes/caregivers need to

be aware of additional factors that can impair meter accuracy: Due to

the enzymatic electrochemical reaction, monitors are sensitive to tem-

perature and have a defined operating temperature range.10 Typically,

an error message is displayed if the temperature is out of range. Unlike

glucose dehydrogenase-based meters, glucose oxidase meters are sensi-

tive to the ambient oxygen and should only be used with capillary blood

of people with normal oxygen saturation. Low oxygen tensions

(i.e., high altitude, hypoxia, venous blood readings) may result in falsely

high glucose readings, higher oxygen tensions (i.e., arterial blood) may

lead to falsely low readings.10 There are also several substances that

may interfere with glucose readings (Table 2).10

2.2 | Expert meters

Expert BG meters have integrated bolus advisors to calculate insulin

dosages. Randomized controlled trials (RCTs) have shown use of a

bolus calculator significantly increases the number of people achieving

HbA1c targets and reduces hypoglycemia.11–13

2.3 | Frequency and timing of SMBG testing

SMBG frequency correlates with improved HbA1c levels and reduced

acute complications.14–16 Generally, SMBG should be performed at a

frequency to optimize each child's diabetes. For persons using inten-

sive insulin regimens (multiple daily injections of insulin pump ther-

apy), SMBG testing should be performed:

• during the day, prior to meals and snacks,

• at other times (e.g., 2–3 h after food intake) to determine appropri-

ate meal insulin doses and show levels of BG in response to the

action profiles of insulin (at anticipated peaks and troughs of insulin

action)

• to confirm hypoglycemia and after treating low BG to monitor

recovery

• at bedtime, as needed overnight and on awakening to detect and

prevent nocturnal hypoglycemia and hyperglycemia

• prior to and while performing potentially hazardous tasks

(e.g., driving)

• In association with vigorous exercise (before, during, and several

hours after physical activity)

• during intercurrent illness to prevent hyperglycemic crisis.

Successful intensive insulin management requires at least 6 to

10 checks per day, appropriate response to the observed values, and

regular, frequent review of the results to identify patterns requiring

adjustment to the diabetes treatment plan.15 This includes review by

the person with diabetes and their caregivers/family in addition to

consultation with the diabetes care team.

However, the actual number and regularity of fingerstick BG mea-

surements should be individualized depending on:

• type of insulin regimen

• ability of the child to identify hypoglycemia

• availability and affordability of meters and test strips

In resource-limited settings, availability and affordability of glu-

cose meters and test strips are not guaranteed. Even though many

TABLE 2 Factors that alter BG measurements

Glucose oxidase monitors

Substances that decrease readings High ambient oxygen

Uric acid

Acetaminophen

Substances that increase readings: Low ambient oxygen

Substances with variable effect: L-DOPA

Ascorbic acid

Tolazamide

Glucose dehydrogenase monitors

Substances that increase readings: Galactose

Xylose

Abbreviation: BG, blood glucose.
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children are on multiple daily injection regimens, only a few can afford

frequent BG testing needed to optimize diabetes management. Very

often testing is performed 3–4 times a day (i.e., pre-breakfast, pre-

lunch, pre-dinner, and at bedtime). However, many persons with dia-

betes must resort to two times daily, that is, before breakfast and

before dinner. If there are no BG monitoring capabilities, then urine

testing is performed. For a comprehensive discussion on aspects of

diabetes management in resource-limited settings, including glucose

monitoring, please refer to the ISPAD 2022 Consensus guidelines

Chapter 25 on ‘Management of Diabetes in Children and Adolescents

in Limited Resource Settings.

3 | CONTINUOUS GLUCOSE MONITORING

Rapid, capillary assessments of BG concentrations have been instru-

mental in permitting achievement of recommended targets over the

past 30 years. However, SMBG only provides single snapshots of glu-

cose concentrations. Consequently, episodes of hyper- and hypogly-

cemia, in particular nocturnal and asymptomatic episodes, as well as

considerable fluctuations in BG concentrations may be missed and

therefore not factored into treatment decisions.

The emergence of CGM in the late 1990s represented a signifi-

cant therapeutic milestone. Instead of single-point measurements of

capillary blood glucose concentrations, CGM devices measure intersti-

tial glucose concentrations subcutaneously at 1–15 min intervals

using enzyme-coated electrodes or fluorescence technology. Signifi-

cant improvements in device technology over the past decade (includ-

ing improved accuracy, approval for non-adjunctive use, and reduced

need for calibration), availability, smaller size, remote monitoring capa-

bility, and overall personal acceptance of CGM systems have contrib-

uted to the widespread adoption of this technology in clinical

practice.

3.1 | CGM use and uptake

In many countries, CGM use has now become the standard of care for

people with T1D.2 According to data from German and Austrian DPV

and U.S. T1D Exchange registries, CGM use increased exponentially

from 2011 to 2017 in all pediatric age-groups (DPV: 4% in 2015 to

44% in 2017; T1DX: 4% in 2013 to 14% in 2015 and to 31% in 2017),

with the highest use among preschool-aged and early school-aged

children.17 From 2017 to 2020, further increase in CGM use among

individuals with diabetes aged <25 years was seen in both registries

each year for all age ranges (DPV: 40% in 2017 to 76% in 2020;

T1DX: 25% in 2017 to 49% in 2020).18 Recent data from the Austral-

asian Diabetes Database Network (ADDN) registry and the Australian

National Diabetes Service Scheme (NDSS) demonstrate 79% of regis-

try participants with T1D aged <21 years are using CGM.19

DPV and T1D Exchange registry data indicate significant dispar-

ities in CGM use by socioeconomic status (SES). Of note, in the T1D

Exchange registry, the gap of device use between highest and lowest

SES quintiles (52.3% vs. 15.0%) was more pronounced than in the

DPV population (57.1% vs. 48.5%).20 Adequate clinic-specific

resources and interventions to identify and overcome barriers to

CGM uptake are necessary to promote CGM adoption and continued

use.21 In a multiclinic quality improvement initiative of the T1D

Exchange Quality Improvement Collaborative, center-specific inter-

ventions consisting of active person support and education, training

and education of the clinical team, as well as interaction with insur-

ance companies and vendors led to increases in CGM use from 34%

to 55% in adolescents and young adults over 19–22 months.21

3.2 | Categories of sensors

CGM systems fall into one of the following categories:

1. Blinded CGM or professional CGM;

2. Real-time CGM;

3. Intermittently scanned CGM (isCGM) or Flash CGM;

Blinded/retrospective/professional CGM

Blinded or professional CGMs were the first widely used CGM

devices, for example, the MiniMed CGMS Gold system (Medtronic

MiniMed, Northridge, CA) released by Medtronic in 1999. Profes-

sional CGM systems obtain short-term glucose data which are not vis-

ible to the user. They provide health care professionals with data

showing glucose excursions and patterns. In addition to clinical prac-

tice, professional CGM systems are sometimes employed in research

settings to obtain retrospective glucose data and to reduce potential

bias (e.g., in certain settings people may deviate from their usual

behavior when seeing their CGM readings in real-time).

Real-time CGM

Real-time CGM (rtCGM) systems automatically display glucose

values at regular intervals and can utilize programmable alarms when

sensor glucose levels reach predefined hypo- or hyperglycemia

thresholds, as well as rate-of-change alarms for rapid glycemic excur-

sions. Many commercially available rtCGM systems transmit glucose

data directly to smartphones. These data can then be stored and

retrieved on a web server (“cloud”) and used for remote monitoring

purposes by caregivers and healthcare professionals.

In addition to traditional, self-inserted transdermal sensors with a

lifetime from 6 to 14 days, a long-term implantable sensor for up to

6-month use is available (Eversense, Senseonics Inc., Germantown,

MD) that received regulatory approval in the European Union

(Conformitè Europëenne [CE] Mark) in 2016 and subsequently in

other regions. Of note, the Eversense CGM is currently approved only

for use in adults over 18 years of age. Its implantation requires a

minor in-clinic procedure performed by a trained physician or a nurse

practitioner. Unlike traditional CGM sensors, where glucose is mea-

sured using the enzyme-based electrochemical method, the Eversense

implantable sensor uses non-enzymatic optical fluorescence. The

next-generation Eversense CGM has 180-day long-term wear time

with daily calibration.22
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Intermittently scanned CGM

In 2014, the FreeStyle Libre Flash Glucose Monitoring System

(FSL) (Abbott Diabetes Care, Alameda, CA) was introduced represent-

ing a different CGM category: intermittently scanned CGM (isCGM).

IsCGM devices do not automatically display glucose values at regular

intervals, but report glucose levels only when the user scans the sen-

sor by holding a reader, or a near field communication protocol

(NFC)-enabled smartphone, close to or over the sensor. Current inter-

stitial glucose levels and glucose trend arrows as well as a graph of

current and stored glucose readings are provided on demand.23 As

with rtCGM, glucose data from isCGM can be transferred from a

smartphone to a webserver for remote glucose monitoring purposes

by caregivers or health care professionals. The sensor can provide glu-

cose values up to 14 days after a 1-h sensor warm-up period.

The second generation of FreeStyle Libre (FSL2) was approved in

Europe in 2018 and in the USA in 2020. FSL2 sensors have higher

accuracy (mean absolute relative difference [MARD] 9.2% and 9.7%

for adults and children,24 respectively) and, in addition to the general

FSL capabilities, have optional alarms to alert persons in case the glu-

cose level is out of the target range. To see the actual level, the user

must scan the sensor. The third generation, the FSL3, is actually a

rtCGM providing real-time alarms and real-time readings without the

need to scan. It received CE marking in 2020.

3.3 | Accuracy of CGM devices

The accuracy and precision of first generation CGM systems were

notably inferior to those of capillary BG monitors. Over the past

10 years, however, there has been continued improvement in the

accuracy. Discrepancies between actual BG and CGM levels, however,

continue to occur in the hypoglycemic range and when glucose levels

are changing rapidly. To a great extent this is due to the physiological

delay of about 5–10 min between the flow of glucose from the intra-

vascular to interstitial compartments.25 Accuracy is also influenced by

the time it takes for the sensor to react to glucose26 and the use of

digital filters for smoothening of the sensor signal during conversion

of the measured sensor signal into a glucose value.26,27 Sensor perfor-

mance also may be affected by biomechanical factors such as motion

and pressure (typically micro-motion and micro-pressure).28

Methods used to assess the accuracy of CGM systems include

the mean absolute relative difference (MARD) between sensor read-

ings and reference BG values (absolute difference divided by the ref-

erence value, expressed as percentage) and error grid analysis. MARD

is currently the most common metric used to assess the performance

of CGM systems. Of note, MARD has its limitations, and its use as the

sole performance parameter for CGM systems must be viewed criti-

cally.29 The lower the MARD, the closer CGM readings are to the ref-

erence glucose values. Error Grid analysis allows one to assess clinical

significance of the discrepancy between the sensor and the reference

glucose measurement; greater accuracy corresponds to a higher per-

centage of results in Zone A and B. Accuracy continues to improve

with each new generation of CGM sensors and systems. For most

commercially available CGM systems, the accuracy in clinical trials

reached 8%–10% MARD with about 99% of glucose readings within

the clinically acceptable error Zones A and B.24,30,31 It should be

noted that in the home-use setting CGM system may produce higher

average MARDs than during in-clinic studies.32

Unlike BG meters (see Table 1), for CGM, the minimum accuracy

requirements have not been determined until recently, and there are no

consistent standards in the approval of CGM systems, particularly in

relation to the provision of clinical data demonstrating the device's

accuracy in the intended use population, as well as transparency and

access to this data. Recently, the FDA has outlined a new 510 K (pre-

market approval) route for some CGM systems, designated as “inte-
grated CGM” (iCGM) with additional special controls governing

accuracy ability of this device to work with different types of compati-

ble diabetes management devices, including automatic insulin dosing

systems, insulin pumps, and BG meters.33

3.4 | Sensor interference

Certain exogenous and endogenous interstitial fluid substances,

including some commonly-used medications, may interfere with CGM

system accuracy. This can result in falsely high or low glucose values.

In particular, therapeutic doses of hydroxyurea can markedly ele-

vate sensor glucose readings compared with glucose meter values34;

likewise, acetaminophen at a dose of 1000 mg can falsely elevate sen-

sor glucose values in certain CGM systems.35,36 Salicylic acid at doses

≥650 mg may mildly reduce glucose readings, and ascorbic acid (vita-

min C) at doses ≥500 mg may cause falsely higher readings.37 CGM

readings may also be affected by ingestion of lisinopril, albuterol,

atenolol, and red wine.38

The effect of different substances on glucose reading depends on

sensor technology. Specifically, CGM systems that use enzymatic

electrochemical sensors to measure glucose concentrations seem to

be more susceptible to interference than systems using abiotic (non-

enzyme based), fluorescent glucose-indicating polymer to measure

glucose. In particular, for the long-term implantable fluorescence-

based sensor only tetracycline and mannitol produced significant sen-

sor bias when tested in vitro within therapeutic concentration

ranges.39

Medications such as salicylic acid, acetaminophen and vitamin C,

commonly available over the counter for self-administration, and may

be present in combination products or supplement formulations lead-

ing to persons with diabetes not knowing that they are taking specific

substances. Sensor bias produced from various substances can be

most significant for persons using CGM data without confirmatory

measurements of capillary BG or for those using CGM data to inform

insulin delivery in closed-loop systems. Therefore, CGM users should

be aware of how certain systems may be impacted by common medi-

cations and always test with a glucose meter whenever symptoms do

not match a CGM reading.
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3.5 | Calibrations/factory-calibrated systems

The latest generations of rtCGM systems (i.e., Dexcom G6, Dexcom

G7, Guardian 4) and all available isCGM (FSL1, FSL2) are factory-cali-

brated, meaning that user calibrations using fingerprick glucose mea-

surements are generally not needed. This eliminates pain and

inconvenience and takes away a significant source of error from sen-

sor calibration. Factory calibration is performed under laboratory con-

ditions during the sensor manufacturing process.40 For rtCGM manual

calibration is still possible, for example, if CGM readings and results

from capillary BG readings do not line up well over a prolonged period

of time.

For older generation CGM sensors that depend on manual cali-

brations (i.e., entering BG readings from a meter into the CGM sys-

tem), the required calibration frequency varies by device. Typically,

the first calibration is performed 1–2 h after insertion of the sensor

and thereafter a minimum of one calibration is required every 12 h.

For these systems, regular calibrations are essential to maintain the

accuracy and optimum sensor performance. The optimum times to

calibrate are when the interstitial fluid glucose concentration is in

equilibrium with the capillary blood, i.e. when glucose levels are least

likely to be changing rapidly: before meals, before bedtime, before

insulin administration, when trend arrows on the CGM/pump screen

show glucose levels are stable. User calibration can lead to wrong sen-

sor reading if at the time of calibration the sensor signal has a tempo-

rarily falsely reduced or elevated value, for example, caused by

interfering substances or site compression (“compression lows”).40

3.6 | Non-adjuvant use

RtCGM systems were originally approved for adjunctive use, meaning

the sensor glucose results needed to be verified by capillary SMBG

before taking action (e.g., insulin dosing). Along with significant

improvements in accuracy, more and more sensors have received

approval for non-adjuvant use, that is, diabetes-related decisions and

insulin dosing are made based on CGM values alone.

Studies utilizing computer modeling have shown that the thresh-

old MARD level of ≤10% is safe for non-adjuvant use of CGM41 and

most currently-available commercial CGM systems meet this condi-

tion. Furthermore, the T1D Exchange REPLACE BG study provided

evidence of the safety and effectiveness of non-adjunctive sensor

use.42

Dexcom sensors (G5 and G6™ Mobile CGM, Dexcom, San Diego,

CA) have received FDA and CE approval for non-adjunctive use in

persons aged 2 years and older. The Abbot Libre Flash Glucose Moni-

tors (Abbott Diabetes Care, Alameda, CA) have received FDA and CE

approval for treatment decisions in persons aged 4 and older. The

Medtronic Guardian 4 sensor is CE marked for nonadjunctive use

from the age of 7 years. Fingerprick testing may still be recommended

under certain circumstances: hypoglycemia, if glucose is changing rap-

idly, and especially if symptoms are not concordant with the system

readings.

Efficacy of CGM

Real-time CGM systems

Early-generation rtCGM systems use for children with T1D was

associated with only modest benefits in glycemia when compared with

SMBG.43–45 The 2008 JDRF landmark randomized clinical trial (RCT)46

showed no overall glycemia benefit with CGM use in the younger age

groups (8–14 years and 14–25 years), likely related to <50% sensor

wear usage in these groups. A secondary analysis demonstrated bene-

fits across all age groups when the sensor was used ≥6 days/week.47

RCTs and meta-analyses conducted since 2010 utilizing newer genera-

tion rtCGM systems more consistently show that use of rtCGM is able

to improve glycemia in both children and adults with T1D and, depend-

ing on the population studied, benefits are seen in terms of lower

HbA1c concentrations, increased TIR, reduced hypoglycemia (including

severe hypoglycemia), and reduced glucose variability.3,43,48–52 There is

now emerging evidence that improvement in glycemia is equivalent in

users of insulin pump therapy and MDI therapy.50,53–57

Contemporary large registry-based studies have shown that com-

pared to SMBG, use of rtCGM is associated with lower HbA1c levels,

a higher proportion of people achieving ISPAD HbA1c targets, and

fewer episodes of DKA in children and adolescents.2,17,58–63 This pos-

itive effect on HbA1c has also been seen in a Swedish registry-based

study that described a progressive decrease of HbA1c in very young

children during the 2008–2018 period, in parallel with the increasing

use of pumps and CGM.64 Data from national population-based regis-

tries following rtCGM/isCGM reimbursement programs report

improvement of T1D glycemic outcomes in children, adolescents, and

adults.65–67

In contrast, registry-based studies have not consistently shown a

lower number of severe hypoglycemic events in people using

rtCGM.2,60–62 Tauschmann et al. analyzed real world data from people

with T1D aged <18 years from Germany, Austria, and Luxemburg in

the DPV Registry and showed a reduction in severe hypoglycemic

events during the first year of CGM use.59 Interestingly, data from

observational studies in children and adolescents, suggest that, irre-

spective of insulin delivery system, early initiation of CGM within

1 year of T1D diagnosis is associated with fewer severe hypoglycemic

events and more favorable glucose outcomes.68,69

RCTs using the latest-generation non-adjunctive rtCGM systems

have shown positive effects on both HbA1c levels and TIR70,71 in ado-

lescents and young adults. The MILLENIAL Study of a factory-

calibrated rtCGM showed that TIR increased when compared with

SMBG.71 Supporting this finding, data from single-center observa-

tional studies with selected population aged <20 years have reported

a decrease of HbA1c levels after initiation and with uninterrupted use

of rtCGM.68,72

Data from RCTs in young children have replicated the results of

studies from adolescents and young adults. Though data from small

observational studies suggest that CGM can be used successfully in

children <8 years,73–75 a more recent trial of non-adjunctive rtCGM in

143 very young children (mean age 5.7 years) did not show a statisti-

cally significant improvement in TIR. However there was a substantial

reduction in the rate of hypoglycemia seen with rtCGM vs traditional
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capillary BG measurements over 6 months.76 Using data from the

Slovenian National Registry, Dovc et al demonstrated that the use of

CGM was well tolerated by pre-school children and that a positive

effect was observed in glucose variability.75

isCGM systems

To date very few RCTs have been conducted using isCGM,55,77

and only one in adolescents and young adults.77 The IMPACT multi-

center isCGM RCT focused on ameliorating hypoglycemia and

involved adults with HbA1c <7.5% at study entry. It demonstrated

that isCGM use reduced time spent in hypoglycemia, reduced glucose

variability, and improved TIR (3.9 to 10.0 mmol/L, 70 to 180 mg/dl)

when compared to SMBG.55 Similar results, including significantly

reduced time in hypoglycemia without deterioration of HbA1c were

observed in a subgroup analysis of the IMPACT RCT in adults with

T1D managed with MDI therapy.78 However, the effect of this tech-

nology in those with suboptimal glycemia remains less certain. In a

6-month RCT in youth aged 13 to 20 years with elevated HbA1c

(HbA1c ≥ 9%), Boucher et al did not demonstrate differences in

HbA1c levels when using isCGM compared to SMBG.77 Nevertheless,

this youth population increased testing frequency 2.5 fold and

reported a higher satisfaction with its treatment.79

Data from observational clinical studies in children aged

4–18 years at isCGM initiation have shown greater TIR80 and lower

HbA1c80,81 compared to SMBG use prior to isCGM start,80,81 similar

to what has been described in adults.82–84 Interestingly, when com-

paring isCGM users across different age groups,85,86 benefits were

more pronounced in children under 12 years85 and preschool chil-

dren86 compared to adolescents85,86 and adults.85 Scanning frequency

(11–13 scans/per day) is associated with favorable glycemic markers

(HbA1c and TIR) though not with reduction of time in

hypoglycemia.80,81,85,87,88 These studies were all performed using

first-generation systems without alarms for impending hypo- and

hyperglycemia. Studies using newer systems with optional real time

alarms and improved accuracy are needed.

In addition, anonymized real-world data studies have also shown

increased scanning frequency benefits time in hypoglycemia.67,89,90

One observational study in children and adults using data from

12,256 individuals in the Scotland national diabetes registry found

that isCGM initiation was associated with significant reductions in

HbA1c with the greatest reductions in those with highest starting

HbA1c values and children <13 years of age; DKA episodes were also

decreased except in adolescents; among those at higher risk for

severe hypoglycemia requiring hospitalization (SHH), a marked reduc-

tion in SHH event rates was also observed.91 A prospective real-world

cohort study after 1 year of nationwide reimbursement of isCGM in

Belgium reported fewer severe hypoglycemia and DKA events with

the use of isCGM.66

Rt CGM versus isCGM

In recent years, studies directly comparing rtCGM and isCGM sys-

tems have been published, including observational studies in children

and adolescents92 and adults with T1D,93 and one RCT in adults.94 All

showed superiority of rtCGM over isCGM in terms of improved TIR

and reduced percentage of time in hypoglycemia. However, the

number of studies and the number of trial participants were limited,

particularly in children and adolescents. Additionally, mainly older gen-

eration devices were used.

CGM use from diabetes onset

Tight glycemia from diabetes onset has been shown to benefit

long-term glycemic trajectories in individuals with T1D.95 Early intro-

duction of CGM among children with new onset diabetes was

TABLE 3 Basic guidelines for starting CGM use

Before initiation

• Review device components and features

• Advocate for insurance coverage/reimbursement

• Support consistent options for CGM supply provision

• Provide access to customer service contact for technological

support

• Ensure/arrange access to CGM data platforms

Device insertion and adherence

• Review sensor site selection, site rotation, signs, and symptoms of

cutaneous/subcutaneous issues

• Review insertion techniques

• Offer supplementary adhesive products. These include:

� Wipes: Skin tac IV prep, skin prep

� Dressings and barriers: Tegaderm, IV-3000, Hypafix

� External Wraps: Coban, Pre-Wrap

• Offer adjunctive adhesive removers, such as Unisolve or Detachol,

or products one may have at home, like baby oil

• Review signs/symptoms of skin irritation/contact dermatitis

Calibration

• For sensors requiring calibrations, discuss frequency of calibrations

and ideal times to calibrate

� Consider pre-emptive calibration schedule. If calibrations are

required every 12 h, encourage persons to calibrate three times

a day (for example, prior to breakfast, dinner and bedtime)

� Discuss calibrating when glucose is relatively stable (arrow

shows glucose stable, no rapid change on sensor glucose graph)

Alerts and alarms

• Consider leaving alerts off initially to help avoid alarm fatigue.

• When incorporating alerts, personalize them and use wide

thresholds at first (i.e. 70-250 mg/dL [3.9–13.9 mmol/L]). These

can be adjusted over time.

� For those with recurrent hypoglycemia, set low alert first.

� For those with sub-optimal glycemia, consider setting high alert

first.

• In the beginning, do not employ rate of change or predictive alerts.

Consider how these additional alerts may be actionable moments

prior to incorporating them. This will help prevent alarm fatigue.

• Rate of change alerts or predictive alerts might be turned on in

situations where rapid changes in glucose levels are more likely

than under normal everyday conditions (e.g. more physical activity,

eating different types of foods).

Retrospective Review

• Encourage downloading, if required, to review data

• Encourage retrospective data review to inform insulin dose

titrations

Real-time data

• As appropriate discuss non-adjunctive use of sensor data

• Review significance of sensor lag

• Review significance of trend arrows

• Consider recommendations on adjustments of insulin doses based

on sensor glucose values and trend arrows111,112
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associated with a 0.66% lower HbA1c at 12 months after diagnosis

compared to those who did not start CGM.68 Long-term improvement

in HbA1c over a 7-year follow up period was seen when CGM was

initiated in the first year after T1D diagnosis compared to no CGM

use or when CGM initiation after the first year.96

Residual beta-cell preservation, often assessed by residual

C-peptide secretion, has long been a goal of interventions for persons

with new onset T1D to decrease risk of long-term diabetes related

complications.97–99 There are several ongoing studies investigating

the benefit of more modern factory-calibrated CGM and hybrid closed

loop systems in preserving beta-cell function in the new onset period.

As the role of CGM and CGM-derived metrics in clinical trials as out-

come parameters is being established,100 CGM will be used increas-

ingly to monitor glycemic trajectories in pharmacologic intervention

studies on diabetes onset or prevention. There will also be a role for

CGM in the monitoring of people at high risk of developing T1D fol-

lowing positive islet antibody screening.101,102

Practical considerations

Education

Initial and ongoing education and training in CGM use remains a key-

stone to optimizing CGM uptake and long-term use, as glycemic benefits

are only observed if the device is worn consistently.103 While many

aspects of CGM use remain largely intuitive,104 structured training of

youth and parents/caregivers about CGM device components, insertion,

skin care, and data interpretation is critical to assure safe and effective use

of this technology.103,105 Further, ongoing education and support are rec-

ognized as essential to overcome barriers to consistent CGM use and as

technologies are continuously updated.103,106 Follow-up training is also

recommended to teach users how to analyze and interpret their glucose

data.107,108 In addition, psycho-educational support is helpful to set realis-

tic expectations and to address individual education and training needs.103

Structured educational material and written healthcare plans to

support CGM use should also be provided to caregivers of children

with diabetes, including daycare providers, school nurses, teachers,

babysitters, after-school program supervisors.103,109,110 Table 2 pro-

vides an overview of the structured education aspects to consider at

CGM initiation (Table 3).

Exercise

CGMs can be helpful in reducing glycemic excursions associ-

ated with exercise, which represent a challenge for youth and

their parents/caregivers.113 RtCGM has proven to be effective

in both the prevention and early detection of exercise-induced

hypoglycemia.114

Limited data exist on the efficacy of isCGM in maintaining optimal

glycemia during exercise when compared to rtCGM. In a RCT in adults

with T1D, the use of rtCGM was superior to isCGM in reducing hypo-

glycemia and improving TIR during exercise.94

The use of predictive hypoglycemia thresholds and rate-of-

change in glucose alerts in rtCGM devices, allows prompt action to

avoid glycemic fluctuations during and after exercise.94,115,116 Also,

the use of thresholds for lower glucose values allows the user to con-

sider carbohydrate consumption with respect to the rate-of-change in

glucose and the trend arrows.115–118

A recent position statement recommends different glycemic

ranges before, during and after exercise according to the age group,

the type of exercise, the risk for hypoglycemia and in accordance with

the trend arrows.117 However, these recommendations represent a

general approach that needs to be personalized for the individual child

and parents/caregivers.

CGM remote monitoring tools also offer the possibility for par-

ents/caregivers to facilitate supportive action in case of glycemic

excursions associated with exercise118 or to avoid post-exercise noc-

turnal hypoglycemia in children.119

For more information on exercise in children and adolescents

with diabetes, please refer to the ISPAD 2022 Consensus Guidelines

Chapter 14 on Exercise in children and adolescents with diabetes.

CGM and skin issues

Inflammatory skin reactions elicited by non-specific skin irritation

or delayed-type allergy to adhesive or device materials remain a bar-

rier to consistent long-term CGM use, especially in young children.120

Rate of cutaneous complications from CGM use in clinical trials were

comparably low with one event per 8 weeks of sensor wear-time.121

However, there appear to be discrepancies between trial reporting

and observational data.121 Reports on skin issues related to CGM use

are becoming more frequent with the long-term use of sensors and

the availability of devices with longer wear time.122,123 CGM-

associated skin conditions include localized eczematous reactions

under the device or the fixation plasters, post inflammatory hyperpig-

mentation at CGM sensor insertion sites, device-associated pruritus

at the application site.124,125 Increasing evidence identifies sensitizing

components of sensors and adhesives as factors possibly responsible

for skin reactions, including allergic contact dermatitis.126,127 The

exact adhesive composition is rarely made available by manufacturers,

but most devices contain acrylate, which can cause contact dermati-

tis.127 Recently, initiatives for full and accurate labeling of the chemi-

cal composition of devices were presented.128 Strategies to preserve

skin integrity include correct device placement, prophylactic skin care,

proper removal techniques, and promotion of skin healing. In addition,

barrier agents to minimize the risk of hypersensitivity reactions may

reduce the risk of skin irritation due to frequent sensor use.129

For more information on skin related issues, please refer to the

ISPAD 2022 Consensus Guidelines Chapter 14 on Other complica-

tions and associated conditions in children and adolescents with type

1 diabetes.

Remote monitoring

Mobile phone-based CGM systems have the ability to transmit

glucose data to the “cloud,” and allow for digital remote monitoring,

whereby parents/caregivers are able to view a person's CGM tracing

and receive alerts on their own devices, such as smartphones, tablets,

and smart watches. Remote monitoring of CGM has been reported to

improve several psychosocial outcomes in parents of children with

diabetes, including quality of life, reduced family stress, and improved

parental sleep.119,120,130 Parents may have increased comfort in leav-

ing their children with other caregivers (e.g., daycare, school, babysit-

ters, etc.), given their awareness of the child's glucose levels and well-

being from afar with remote CGM monitoring.120 Remote monitoring
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of CGM data in the school setting may enable a collaborative

approach to diabetes management between the student with diabe-

tes, parents, and school personnel.110

Parental fear of hypoglycemia has been associated with subopti-

mal glycemia in children with diabetes, especially hypoglycemia during

the night-time.131 The ability to remotely monitor CGM data has been

shown to prevent prolonged nocturnal hypoglycemia in youth with

diabetes.132 The peace of mind afforded by the ability to monitor

CGM data remotely and receive real-time alerts for glucose excur-

sions enables better parental sleep,119,120,130 and possibly comfort

with in-range glucose values to improve overall glycemia.

However, conflicts can also arise because of remote monitoring of

CGM data.120 For example, youth with diabetes may have the feeling

of being “policed” by their loved one, resulting in feelings of frustration.

On the other hand, remote caregivers might experience unnecessary

panic in certain situations such as falsely low alerts due to compression.

This highlights the need for constructive communication around diabe-

tes management with clear expectations regarding when and how care-

givers should intervene based on remote monitoring of glucose data

and alerts received. This is particularly important in adolescents who

may desire increasing autonomy in diabetes management but can still

benefit from the support of their parents and other caregivers.

Telemedicine

CGM is a helpful tool for facilitating real-time data sharing via

web-based software solutions in the context of telemedicine visits so

that healthcare professionals have retrospective glucose data for

review. This allows healthcare professionals to easily review and inter-

pret glucose data to make recommendations on therapy adjustments

during telemedicine consultations. To that end, CGM use has become

fundamental to effective remote diabetes care delivery, as cloud-

based data acquisition can support meaningful interactions between

families and the diabetes team. The COVID-19 pandemic in early

2020 accelerated the widespread adoption of telemedicine and

remote person engagement.133 Pediatric diabetes centers were

among those who rapidly expanded telemedicine services to facilitate

person care.134,135

Many observational studies regarding the utility of CGM were

conducted during the COVID-19 pandemic.136 However, solid evi-

dence demonstrating the benefit of utilizing CGM data via telemedi-

cine in improving clinical outcomes in youth with diabetes are lacking,

but it will likely remain an important tool well beyond the COVID-19

pandemic. To achieve the greatest benefit from CGM, persons with

T1D and caregivers may need more frequent touchpoints via telemed-

icine with the diabetes care team to learn how to leverage its full

potential.

Despite the widespread adoption of telemedicine for people with

diabetes and one of its key elements, that is, remote availability of glu-

cose data for simultaneous review by people with diabetes and their

healthcare professionals, socio-economic factors, including poverty

and limited access to diabetes technology pose major obstacles to

realizing its successful application. ISPAD advocates for more avail-

ability and equal access to diabetes technology for all people with

diabetes.

4 | QUALITY OF LIFE AND PERSON WITH
DIABETES PERSPECTIVES ON USE OF CGM

Uptake and continuous use of diabetes devices and technologies are

associated with psychosocial and family factors. Psychosocial factors

are broadly defined as behavioral, emotional, and social variables that

characterize an individual across both dimensions of promoting health

(e.g., resilience) and having negative effects on health (e.g., depression).

The focus on psychosocial factors in relation to diabetes device and

technology use has grown out of the broader interest in understanding

how these factors impact diabetes management and health outcomes.

For example, it is well established that personal strength and resilience

factors, along with positive family communication, are associated with

optimal management and outcomes.137–139 Likewise, psychosocial fac-

tors such as diabetes distress, depression, and family conflict are com-

mon in youth with diabetes and often lead to suboptimal management

and outcomes.140–143 Herein, the current understanding of the associa-

tion between psychosocial factors and CGM use will be highlighted.

ISPAD guidelines on the psychosocial care of youth and the

American Diabetes Association guidelines for the psychosocial care of

people with diabetes144,145 highlight that attending to the psychoso-

cial needs of all youth and their families is critical. Please refer to

ISPAD 2022 Consensus Guidelines Chapter 15 on Psychological care

of children and adolescents with type 1 diabetes.

Similarly, when considering whether diabetes devices and tech-

nologies should be recommended or encouraged, understanding the

psychosocial aspects of the user and family will help optimize a good

fit for the device. The most evidence is available for insulin pumps

and CGM. CGM is linked to optimal glycemic outcomes and many

users report greater treatment satisfaction.146,147 There are also

recent reports of significant alleviation of diabetes distress, worries

about hypoglycemia, and improved general well-being.148,149 Further,

there are benefits of using CGM early in the course of type of diabe-

tes150 and during the global pandemic.151 Person-reported outcomes

have become integral and accepted parts of randomized trials on

CGM, and offer a broader view of the lived experience of using

devices in T1D management.70 While there are significant benefits of

CGM use, there are also reports of heightened worries152,153 among

adolescents and young adults and many discontinue CGM for a vari-

ety of reasons including cost, too many alarms, concerns about accu-

racy, and discomfort wearing a device on one's body.154 Thus, setting

realistic expectations for potential users and their families and provid-

ing referrals for any psychosocial need that may serve as a barrier to

optimal use, are indicated. In addition, the following recommendations

are made when considering CGM use (and more broadly device and

technology use) in diabetes care practices:

• Portray the use of diabetes devices and technologies as an option

that can be a good fit for many youth and families; provide educa-

tion and encourage youth and families to review vetted websites

and device informational materials.

• Encourage uptake and refrain from having youth and families

“earn” the right to use devices (i.e., the requirement to achieve a
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certain hemoglobin HbA1c level before considering starting a

device). If payers/insurance companies require logging or other

documentation prior to device approval, convey that information

as a specific requirement of the payor and not an expectation of

the diabetes care practice.

• Conduct a brief assessment of expectations and barriers to uptake

and use. Common barriers are cost (often noted by parents of

youth, and the youth themselves,155 wearing multiple devices, sen-

sation of wearing a device on a changing and growing body, fre-

quent alarms and maintenance of device.

• Problem solve with the youth and their family on ways to break

down barriers. This may require referral to a psychological care

provider to teach problem solving skills.144

• If psychosocial needs are reported or identified, refer to psycholog-

ical care provider.144

• Support youth and families in initiating CGM use, interpreting and

using the CGM data to optimize diabetes management and reduce

diabetes burden.

Beyond CGM, the use of other devices and technologies provides

additional advice for prescribers and supporters of diabetes devices

For example, in a report of 284 potential users of closed loop in the

US and UK,156 three themes were identified as critical for uptake:

developing trust in the system and degree of control of it; features of

the closed loop systems; and concerns about the everyday barriers to

adoption. Of note, children and adolescents differed from parents in

that youth primarily identified needs specific to their immediate con-

texts (e.g., school and peers). Parents were most concerned about the

accuracy and ensuring that systems stabilize glucose levels and reduce

risk for long-term complications. Other reports emphasize these same

ideas of setting realistic expectations157,158 and potential benefits on

quality of life and well-being are already being realized with closed-

loop systems.147,159,160 In the United States, the FDA recognized the

first Medical Device Development Tool (MDDT) as the INSPIRE

scales, a person reported outcome survey evaluating expectations and

well-being related to device use.161 This can be considered when for-

mally evaluating programs for initiating and sustaining device use.

In sum, the current evidence base points to psychosocial and qual-

ity of life benefits from using CGM and other devices such as hybrid

closed loop systems. Interventions to reduce barriers to technology use

are actively being investigated.154 However, more clinically-translatable

research, specifically conducted in the pediatric population is needed on

the best ways to break down barriers to device and technology use and

prevent discontinuation. This likely rests in setting realistic expectations,

teaching effective problem-solving skills (general and technology-spe-

cific), and viewing digital health applications as a scaffolding for youth

to internalize the salience and routine of specific health behaviors.

5 | CONCLUSIONS

Over the past 30 years, glucose monitoring has evolved from urine

glucose testing and fingerstick capillary BG measurements to

continuous glucose monitoring systems using factory-calibrated inter-

stitial sensor technology. Along with significant improvements in

CGM technology (including accuracy, device size, prolonged sensor

lifetime, and user-friendliness), wider availability of CGM systems due

to better coverage by national and private insurance in more parts of

the world and demonstrated benefits of their application compared to

SMBG in T1D, CGM has become standard of care for people with

T1D in many countries.

Today, CGM technology is at the heart of diabetes management.

CGM specific metrics, in particular “TIR” (defined as percentage of

time with sensor readings between 70 and 180 mg/dl, 3.9 and

10 mmol/L) have been adopted as useful clinical markers162 and out-

come measurements100 that supersede or complement HbA1c for a

wide range of people with diabetes (see ISPAD 2022 Consensus

Guidelines Chapter on Glycemic Targets). Manual or automated

upload of CGM data to cloud-based platforms enables sharing and

remote reviewing of the data. This has been and will continue to be

instrumental in providing telemedical care during the COVID-19 pan-

demic and beyond. Particularly noteworthy, significant progress has

been made in CGM-enabled algorithm-driven automated insulin deliv-

ery (AID) delivery in the form of a hybrid artificial pancreas (see ISPAD

2022 Consensus Guidelines Chapter on Insulin Delivery).

With the advent of factory-calibrated CGM sensors licensed for

non-adjuvant use, it seems as if SMBG has started to take a back seat

in glucose monitoring. However, it still has an important role. Even

users of AID systems with calibration-free non-adjuvant CGM still

have to perform capillary BG measurements in certain situations, that

is, if sensor readings and personal perception do not match, to confirm

hypoglycemia, to do manual calibrations if sensor readings are not

accurate, and when no CGM data are available.

Of course, people who do not have access to CGM will still rely

on SMBG devices. CGM devices and sensors are expensive and may

not be available in many countries. Insurance coverage may also be

limited. Over time, these devices will continue to become more widely

available and better coverage by both national and private insurance

is anticipated. ISPAD advocates for increased availability of CGM for

children, adolescents, and young adults with diabetes. Where avail-

able, CGM should be initiated in all children, adolescents, and young

adults with T1D as soon as possible after diagnosis.

This chapter has reviewed evidence on glucose monitoring tech-

nology in children, adolescents, and young adults. Recommendations

on their use and practical advice regarding their applications has been

provided. Since this is a rapidly evolving area of research and practice,

further innovations and updates are to be expected.
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